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Reaction-diffusion equations, in which the reaction is described by a sink term 
consisting of a sum of delta functions, are studied. It is shown that the Laplace 
transform of the reactive Green's function can be analytically expressed in terms 
of the Green's function for diffusion in the absence of reaction. Moreover, a 
simple relation between the Green's functions satisfying the radiation boundary 
condition and the reflecting boundary condition is obtained. Several applica- 
tions are presented and the formalism is used to establish the relationship 
between the time-dependent geminate recombination yield and the bimolecular 
reaction rate for diffusion-influenced reactions. Finally, an analogous develop- 
ment for lattice random walks is presented. 

KEY WORDS: Diffusion-controlled reactions; first passage times; radia- 
tion boundary conditions; Green's functions; recombination rates; rate 
constants. 

1. I N T R O D U C T I O N  

The subject of t rapping or absorpt ion in both r a n d o m  walks and  diffusion 

has a large literature. However,  not  a great deal of a t tent ion has been paid 
to comparab le  problems in which traps may  be imperfect, i.e., in which 
r a n d o m  walkers who impinge on a t rapping b o u n d a r y  are not  necessarily 
absorbed (or "killed" in the mathemat ica l  terminology(1)). F una ba sh i  was 

the first to discuss the kinetics of imperfect  t rapping in a lattice r a n d o m  
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walk, in the context of impurity trapping of excitons and electrons. (2) 
Recently den Hollander and Kasteleyn (3/ have analyzed random walks 
with a periodic distribution of imperfect traps, while Rubin and Weiss (4) 
treated a more general case in which there can be an arbitrary distribution 
of such traps. Comparable problems arise for diffusion processes and have 
been analyzed by the imposition of radiation (or partially reflecting) 
boundary conditions starting with Collins and Kimball (5) and discussed 
more recently by Mozumder, (6t and Szabo, Schulten, and Schulten. (7~ 
Mozumder (6'81 was interested in the extension of Noyes '(9/ theory of 
diffusion-controlled reactions. Shoup and Szabo (1~ have also analyzed this 
class of problems as a model for ligand binding to macromolecules, while 
Weaver (11) used the imperfect absorption model to discuss localization of 
proteins on membrane surfaces. While the use of radiation boundary 
conditions for the relevant diffusion equation is a natural starting point 
for analyzing imperfect absorption problems, an alternative does exist. 
Wilemski and Fixman (12~ treated diffusion-influenced reactions by intro- 
ducing a position-dependent sink term in the diffusion equation itself. They 
pointed out that if the sink term is simply proportional to a delta function, 
then an appropriate solution of their reaction-diffusion equation yields 
results formally equivalent to using the radiation boundary condition. This 
has also been discussed by Northrup and Hynes. (13) 

A purpose of this paper is to show that when the sink term is a sum of 
delta functions, then the Green's function describing the reaction can be 
simply expressed in terms of the Green's function for diffusion in the 
absence of reaction. Moreover, we show that one can easily construct the 
Green's function which satisfies the radiation boundary condition at a 
surface in terms of the simpler Green's function which satisfies reflecting 
boundary conditions at that surface. We use these results to solve several 
problems exactly both for diffusion and discrete random walks. The prob- 
lem of obtaining approximate solutions to reaction-diffusion equations 
with more general sink terms will be considered in a companion paper. ( 14t 

2. DIFFUSION PROCESSES 

The evolution equation for p(r, t[r  0, 0) will be written 

8P_ 5-; - k ( r ) p  (2.1) 

where L is assumed to be a time-independent second-order conservative 
operator. That is to say, the solution to the equation 

0C _ CC (2.2) 
3~ 
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has the proper ty  

fG(r,  t[ r o , 0) dr  = 1 (2.3) 

The  solution to Eq. (2.2) can be regarded as a Green ' s  function, allowing us 
to t ransform Eq. (2.1) into an integral equat ion in the form of Dyson ' s  
equat ion (~s) 

p(r ,  �9 l r o, 0) = G(r, �9 ]ro, 0) 

-fo'd , fa(r, - I r', r r0,0)dr' (2.4) 
where we have  made  use of the proper ty  G(r, t [ r', ~-) = G(r, t - r ] r', 0) that  
follows f rom the t ime independence  of L. 

Equat ion  (2.4) assumes that  p(r ,  �9 [r 0, 0) and  G(r, r r r0, 0) obey identical 
t ime- independent  bounda ry  conditions. An analogous equat ion can be 
writ ten down for  r a n d o m  walks or other  processes that  occur  in discrete 
time. (3) Not ice  also that  G need not  be taken to be a Green ' s  funct ion for 
p ropaga t ion  in free space (as has been generally assumed in the analysis of 
r a n d o m  walks) but  m a y  be that  appropr ia te  for diffusion in the presence of 
reflecting boundar ies  a n d / o r  in a potential .  Equat ion  (2.4) can be reduced 
to a much  simpler fo rm when the absorpt ion  term, k(r),  is a linear 
combina t ion  of delta functions.  If we write 

k(r)  = Z ~jS(r - aj) (2.5) 
J 

Eq. (2.4) takes the form 

p ( r , t  [ ro ,0  ) = G( r , t  I ro ,0  ) - ~xj~tdTG(r,t - ~-Iaj ,0)  
J JU 

• I t0 ,0 )  (2.6) 

Thus  p(r,t [r0,0 ) depends  only on its value at the special points  r = a 1, 
a 2 . . . .  , a n. Before proceeding to the solution of this equat ion we remark  
that  a term of the fo rm ~6(r - a) represents a fully absorbing  point  at a in 
the limit K --~ ~ and  a part ial ly absorb ing  point  for finite K. 

To  solve Eq. (2.6) we set r = a 1 , a 2 . . . . .  an in turn which leads to the 
self-contained system of equations 

p ( a i ,  t J to,  0) = C(a~,  t l ro, 0) 

n t 
-- ~ K.( G(a i ,~-  7la j 0)p(ay,~'lr 0 0)d~ ( 2 . 7 )  

~ ,  J J0 ' ' ' 

These, in turn, can be conver ted  into a set of n linear equations in the 
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Laplace transforms 

(a, I~o) = ~ % - s ~ ' ( a , ,  t l ro, O) at 
(2.8) 

* fo~ G(ai I to) = , t I ~o, o) dt 

which can be written 

/3(ai ]r0) + ~ ~j0(a~ I aj)/3(aj ] ro) = G(ai i r0) (2.9) 
j= l  

Finally, the solution to this set of equations can be substituted into the 
Laplace-transformed version of Eq. (2.6): 

fi(rlro) = G ( r l r o ) -  xjG(r[aj)p(aj[ro) (2.10) 
j= l  

Analogous equations for random walks in discrete time are to be found in 
Ref. 4. If we define the probability of survival to age t or greater to be 

Z(t; ro) = fp(r ,  t[ r o, O) dr (2.11) 

then, since L is a conservative operator, it follows that the transform of 
X(t; ro) is 

x(s;~0)--  7 1 - ~jp(ajq~0) (2.12) 
j= t  

When reaction occurs sufficiently quickly so that one can define an average 
reaction time ~-, this parameter can be calculated directly from the Laplace 
transform 

~-(r0) = f0~ ro) dt = 2(0; r0) (2.13) 

However, we will see that in some simple examples r(r0) need not exist. 
The simplest case that allows examination in detail is a system with a 

single partially absorbing point at r = a. In this case one can solve Eq. (2.6) 
explicitly, leading to the result 

g4(r [ a) 8(a I r0) (2.14) p(r l r~  G(r[r~ - 1 + ~ 4 ( a l a )  

The corresponding equation for the survival probability is 

1 1 . (2.15) 
Y(s;r~ = s 1 + ~G(ala ) 

If we use the free space Green's function for G, then Eqs. (2.14) and (2.15) 
give the Green's function and survival probability in the presence of a delta 
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function sink of strength K at r = a. However, if we use a Green's function 
for G satisfying a purely reflecting boundary condition at r = a, then Eq. 
(2.14) yields the Green's function satisfying a radiation boundary condition 
at r = a (see Appendix). This is a useful result because it is simpler to solve 
problems subject to reflecting boundary conditions than it is to solve the 
comparable equations with radiation boundary conditions. 

Before presenting several applications of the above results, we consider 
the situation when the initial condition is taken to be the normalized 
equilibrium density associated with G. The equilibrium density, denoted by 
p(r), has the property that 

f a ( r ,  t l r0,0)p(r0) dro= p(r) (2.16) 

so that 

f f  =! (2.17) dr dr 0 6 (r I r0) s 

Therefore the Laplace transform of the survival probability, is found from 
Eq. (2.15) to be 

* f 1 ( - xP(a) } ( 2 " 1 8 ) s [ 1 +  y~(s) = dr0P(ro)Y(s;r0)= 7 1 ~d(ala)] 

This expression is valid for diffusive motion in the presence of an arbitrary 
potential provided that the initial condition is chosen to be the equilibrium 
density. One can calculate the mean residence time from Eq. (2.18) pro- 

A 

vided the equilibrium density exists and G(a[a) has the small s expansion 
of the form 

limG(a[ a) = p(a____~) + F (2.19) 
s--->O S 

where F is a constant. When this is the case the mean residence time is 
easily found to be 

= ~ ( 0 )  - 1 + ~ r  ~p(a) (2.20) 

However, the solution for the residence moments can be found more 
directly using the algorithms given by Szabo et al. ~7) and Deutch. ~ 17) 

We shall now present several applications of the above results. Con- 
sider the case of free diffusion along a line for which the operator 
L = D ~2/~x2. The Laplace transform of the free Green's function is 

r xol) 
while the Green's function which satisfies a reflecting boundary condition 
at x = 0 is 

Gr(xlXo)= Gf(xlXo) + Gf(x[ -.,Co), x > O  (2.22) 
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First, let us calculate the residence time for a situation when the delta 
function sink is located at x = 0. Using Eq. (2.21) in Eq. (2.15) we have 

1 1 -  (2.23) x(s; xo)= 7 

the inverse transform of which is 

X ( t ; x ~  (4Dt)l/2lx~ 1 

+exp  ~ + ~ - ~  erfc - -  + (2.24) 
2(Dt)l/2 ~ j 

At long times, the asymptotic behavior of Z(t; x0) is 

1 2p 
Z ( t ; x 0 ) ~  (~rDt)l/2 ( - -  + Ix01) (2.25) 

which shows that the effect of imperfect absorption is to change the 
coefficient, but not the asymptotic time dependence of the survival fraction. 
This type of result was remarked on by Funabashi (2) for lattice random 
walks. In higher dimensions one cannot talk about diffusion in the presence 
of absorbing points, but the problem of absorbing surfaces can be analyzed 
by this method as we will show in a later example. Random walks on 
discrete lattices do not have this same difficulty, and can be analyzed by 
the present formalism. An example will be given in a later section. 

As a second example, let us calculate the Green's function which 
satisfies radiation boundary conditions at x = 0, i.e., 

0p(x I Xo) 
x=~ = K/3(01Xo) (2.26) D 3x 

Using Eq. (2.22) in (2.14) we immediately have when a -- 0 

~r I 0)Gr(0[ x0) 
(x I~0) = dr(x I xo) 

1 + ~ < ( o l o )  

= 1 (Ds)- ' /2exp[ --Ix -- Xo[(s/D )'/~] 
2 

1 (Ds)-'/2exp[ - (x + Xo)(s/D ),/2] + 3  

tr exp[ - (x + xo)(s/D )~/2] 
(2.27) Ds + v,(Ds) 1/2 
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which is identical to the result derived by Carslaw and Jaeger (16) using a 
different argument. 

As a somewhat less trivial example of the present formalism consider 
the case of diffusion in a harmonic potential centered at the origin in one 
dimension. For this problem G satisfies 

~ G~ t - D O--O x (~ -~x~ G + flxG ) (2.28) 

By rescaling length and time we can always choose D = fl = 1. The free 
space propagator is 

Gf(x,t]xo,O)=[2~r(1- e 2')]- ' /2exp ~ l - - - e _ ~ ,  ) (2.29) 

We wish to obtain Z(t) for the situation that the reactivity is described by 
the radiation boundary condition at x = 0 with the initial condition being 
the normalized (in the region 0 ~< x ~< oe) equilibrium density 

p(x) = ( 2 1'~2e-X2~2, x > 0 (2.30) 
\ q7 ] 

To solve this problem using Eq. (2.18) we require the Laplace transform of 
the Green's function which satisfies a reflecting boundary condition at 
x = 0, as given in Eq. (2.22). Now 

Gr(0]0) = 2 l/2 oo e - ' t  
- dt 
W (1 - e-2t) 1/2 

os-l o 
(1 - 02) '/2 

1 r (s /2)  
- ~ -  F((s + l ) / 2 )  (2.31) 

Thus, using Eq. (2.18) we have 

* 1 {  L + ~/r + J } ( 2 . 3 2 )  s = 1 - ' I  1 1)/2)] 

Moreover, since 

limGr(OlO) = 1 + ln2 (2.33) 
s--~O S 
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it follows from Eq. (2.20) that the mean residence time is 

1 + x(2/rr)l/Zln2 
r = ~(2/rr)1/2 (2.34) 

In the special case that the boundary at x = 0 is perfectly absorbing (i.e., 
+ at), Eq. (2.32) reduces to 

= 1 2 F((s  + t ) / 2 )  (2.35) 
s 2 V( s /2 )  

which can be inverted to yield 

Y{t) = 2 s in - l (e  - t )  (2.36) 
~r 

This result has been previously obtained by Szabo e t a / .  (7) using a com- 
pletely different argument. Although these authors did not determine Z for 
the partially reactive situation (i.e., ~ 4 = ~ ) ,  they did obtain the same mean 
residence time as in Eq. (2.34) by using the theory of first passage times. 

3. THE RELATION BETWEEN BIMOLECULAR AND GEMINATE 
RECOMBINAT ION RATES 

As the final example involving diffusion in a continuum, we discuss an 
application of the present methodology to diffusion-influenced reactions in 
a spherically symmetric field when the reactivity is described by the 
radiation boundary condition at contact. There are two physically distinct 
problems of interest. The first is the time-dependent bimolecular rate 
constant, k(t). This is just the flux at contact given an initial equilibrium 
distribution. The second is the geminate recombination yield, q(t). This is 
the fraction of molecules that have recombined at time t given that they 
were produced at contact at time t = 0. Berg (17) and Razi Naqvi et al. (18) 
have shown that, in the absence of a force field between the reactants there 
is a very simple relation between k(t) and ~(t). Razi Naqvi et al. (18) 
discussed the relationship between this result, obtained within the frame- 
work of the radiation boundary condition, and the molecular pair approach 
of Noyes. (9) In this section we establish the relationship between k(t) and 
~(t) when the reactants interact via a spherically symmetric potential V(r). 
The proof is almost immediate after the relevant quantities are defined. 

To obtain the bimolecular rate constant, one must solve 

ac -- D ~ [ r2e By(r) a ] at r 2 ar a~ (eBV(r)c) (3.1) 
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where/? = (k B T)- l ,  subject to the initial condition that 

c(r,O) = e -r (3.2) 

and the radiation boundary condition at r = R 

0 ePV(r)c(r, 4~rDR2e-~V(R) I ~r t) ]r=R = xc(R , t )  (3.3) 

The bimolecular rate is then just the flux at r = R, which by virtue of Eq. 
(3.3) is 

k( t )  = ~c(R, t) (3.4) 

Let p(r ,  t lr  o, 0) be the solution to Eq. (3.1) which satisfies Eq. (3.3). Then 
we have 

~00 c~ 2 O)e-BV(ro) c(R ,  t) = 4~r rop(R,  t[ r o , dr o (3.5) 

Since 

p ( r, t [ r o , O )e -By(to) = p ( ro ' t[ r, 0)e-  pv(r) (3.6) 

Eqs. (3.4) and (3.5) can be combined to give 

k ( t) = 47rxe-~V( m fR~r~p (ro , t [ R, O) dr o (3.7) 

Eq. (3.6) can be simply proved by transforming Eq. (3.1) to self-adjoint 
form and using the fact that the solution of the resulting equation is 
symmetric in r and r 0. 

We now turn to the calculation of the geminate recombination yield, 
q~(t). We start with two molecules at contact so that c(r, 0) for this problem 
is 6 ( r -  R) / (47rR 2). The recombination rate is 

+(t) = ~p(R, t I R, 0) (3.8) 

and the yield is 

e~( t) = X footP( R,,r I R, O) d,r (3.9) 

since 0(0) = 0. 
To establish the relation between k( t )  and co(t), we start with Eq. (2.6) 

specialized to a single delta function term located at r = R. We take G to 
be Green's function which satisfies a reflecting boundary condition at 
r = R. Integrating both sides with respect to r and setting r o = R, we have 

oo 2 t 4 fR r - p ( r , t [ R , O ) d r =  1 - X f o  p ( R , ' r l R ,  O)dr (3.10) 

where we have used Eq. (2.3). Finally, by comparing Eqs. (3.7), (3.9), and 
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(3.10), we have 

k(t)  = xe-BV(R)[1 -- ~(t) ] (3.t 1) 

The free field result is obtained when V =  0. Note that in Eq. (3.11) the 
potential also appears implicitly in both k and ft. At steady state ( t ~  oc), 
Eq. (3.11) is the same as Eqs. (29) and (30) of Shoup and Szabo (1~ since 
our k ( • )  is their kcK D and our if(m) is their capture probability 7CKD(R). 

4. LATTICE RANDOM WALKS 

Thus far we have discussed several problems related to continuous 
diffusion. We found that a mean residence time could be calculated in one 
dimension for a single reactive point, but that in higher dimensions one 
must have a reactive surface in order to have a properly posed problem. 
This distinction need not be made for random walks on a lattice. Rubin 
and Weiss (4) developed a formalism for counting the number of times a 
random walk visits a specified set of points. This theory can be applied 
directly to the problem of calculating statistical properties of residence time 
on a lattice with one or more partially absorbing points. The formalisms for 
both discrete and continuous diffusion are almost identical. 

For simplicity we will consider a lattice random walk on a homoge- 
neous lattice with a single partially reactive point at R. Let ~ be the 
probability that a random walker impinging on R will react (or be trapped). 
The probability that a random walker will react at R the j th  time that it 
reaches that point is (1 - o 0 J - la .  Let the random walk be characterized by 
a set of transition probabilities (p(j)}, where p(j) is the probability that the 
random walker will make a transition equal to j at an arbitrary step, and 
define a structure function X(0) by 

X(O) = ~ p(j)exp(ij  �9 O) (4.1) 
(J) 

Let P, (r) be the probability that the random walker is at r at step n having 
started at 0 (=  r) at step O, and let P(r; z) be the generating function 

P ( r ; z )  = ~ P , ( r )z  n (4.2) 
n = O  

which can be represented for homogeneous random walks as an integral: 

P(r;  z ) -  1 '7 e x p ( - i r - 0 )  
(2~r) o ;'-~" " " f i 7 z~-O) d~ (4.3) 

where D is the number of dimensions. (2~ Let Qn(r; l) be the probability 
that the random walk is at r at step n having visited the reactive point l 
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times without having reacted. The joint generating function for this quan- 
tity will be defined as 

~ ' ( r ;x ,z )=  ~ k Qn(r;l) xtzn (4.4) 
l = 0  n=O 

and is found to be (4) 

( 1  - x ) P ( r -  R ; z ) P ( R ; z )  
~(r; x,z) = P(r;  z) - (4.5) 

x + (1 - x ) P ( 0 ;  

The resemblance of this expression to Eq. (2.14) is clear, with the identifica- 
tion ~ = (1 - x)/x  and replacement of the Laplace transform by a generat- 
ing function. 

The generating function for the probability of survival till step n or 
beyond will just be 

S(z) = Snz"= ~-]~(r; 1 - a ,z)  - 1 1 - 
, , = o  r 1 z 1 - a + a P ( O ; z )  

(4.6) 

from which it is possible to derive asymptotic (in n) results by examining 
the behavior of S(z) as z ~ 1. For example, consider a symmetric random 
walk in two dimensions for which 

~ J~P(Jl , j2) = Z ~ jzp(j, ,j2) = 02 (4.7) 
jl  j2 jt J2 

It has been shown that in this case (2~ as z--~ 1, 

[ R ~/2(1 - z)] R ~ 0  P (R ;  z ) ~  ~ K o -g 
(4.8) 

P ( O ; z )  - 1 l n ( 1 - z )  
2f ro  2 

where Ko(u ) is a Bessel function of the second kind. After expanding the 
expression for P(R; z) in a neighborhood of z = 1, we find that the analytic 
behavior of S(z) near this singularity is 

_ 2 [ ( ~ )  2~o2(1 o) J 
S(z)~ (1 - z)ln(1 - z) In + - a (4.9) 

From this expression and a Tauberian theorem cited by Hardy, (21~ we can 
infer that the probability of survival to step n or beyond is asymptotically 

2 o2 1 l (4.10) 
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so that it is impossible to define a mean residence time. Notice that in this 
approximation the parameter a that measures the probability of reaction 
appears only as a multiplier of the time dependence, but does not affect the 
time dependence of S n otherwise. This has also appeared in our treatment 
of the one-dimensional case [Eq. (2.25)]. When there are a finite number of 
imperfectly reactive sites the asymptotic n dependence of Sn will remain as 
in Eq. (4.10) but the coefficient will change from that shown. In three or 
more dimensions the functions P(R; 1) are all finite so that S~ approaches a 
constant in the limit of large n. This is consistent with the fact that the 
probability that a random walker will reach a given point in three or more 
dimensions is less than one. 

While further theoretical developments along the lines of this paper are 
conceptually simple, the next order of interesting generalization involves 
the superposition Of a continuum of reactive sites, which is to say, the 
complete solution to Eq. (2.1). Although one can write down a formal 
solution in terms of a Fredholm series this is not a computationally useful 
result. Hence, in the companion paper 14 we discuss perturbation schemes 
for the solution to Eq. (2.1) when k(r) is small in some sense. 

APPENDIX: EQUIVALENCE OF TWO FORMULATIONS OF 
BOUNDARY CONDITIONS 

In this appendix we derive the relationship between the Green's 
function p(r, t lr0,0) which satisfies the radiation boundary conditions at 
r = a and the Green's function G(r, tlro, O) which satisfies a reflecting 
boundary condition at r = a. We then show that the resulting expression is 
identical to Eq. (2.4) when k(r) is the delta function ~ 8 ( r -  a). Since Eq. 
(2.14) is based on Eq. (2.4), it follows that when G satisfies a reflecting 
boundary condition at r = a, then p, as given by Eq. (2.14), satisfies a 
radiation boundary condition at r = a. In this proof we assume that L is the 
Smoluchowski operator describing diffusion in a potential V(r). 

The Green's function p(r, t I r0, 0) satisfies the equation 

ap (r, t I ro, O) Ot - V.e-BV(r)D(r)V[eBV(r)p(r, tlro,O)] (A.1) 

subject to the radiation boundary condition 

D(r)e-~V(r)n.V[e~V(r)p(r,t[ro,O)]=~p(r,t]ro,O) at r = a  (A.2) 

where n is a unit vector normal to the boundary at r = a and directed 
towards the diffusion region. The Green's function G(r, t I r 0' 0) also satisfies 
Eq. (A.1) but is subject to the reflecting boundary condition, 

n.V[e~V(r)Gfr, t[ro,O)]=O at r = a  (A.3) 
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To express p(r, t l ro,0 ) in terms of G(r, tlr0,0), we start with the adjoint 
form of Eq. (A.1) for G(r, t [ r  0, 0), (7) 

G(R, f i r ,  t) -- eBV(r)V �9 e-/~v~r)D(r)Va(R, r l r ,  t) (A.4) 
3t 

and the adjoint reflecting boundary condition ~7) 

n. VG(R, Tlr, t )=O at r = a  (A.5) 

If one multiplies Eq. (A.1) by G(R, TIr, t ) and Eq. (A.4) by p(r, tlr0,0), 
subtraction of the resulting equations leads to 

~--~ [ G (R, T I r, t)e (r, t [ r0,0) 1 

= G(R, V[ r, t )V. e-flV<OD(r)q [ e~V(r~(r, t I r0,0)] 

--p(r , t[ro,O)ef iV(r)v .[e- '~V(r)D(r)VG(R,  Vlr ,  t)] (A.6) 

= V ' [  G(R,  Vlr ,  t)e-fiV(r)D(r)V[eflV(r)p(r, t i ro ,O)]  

- p ( r ,  t[ r o , 0) D (r) V G(R, T lr, t) ) (a.7) 

Integration of Eq. (A.7) over r and t gives simply 

rtro,O) = G(R, T]ro,O) -foTdtG(R, TI a,t) p(R, 

• xp(a, t[ r o , 0) (A.S) 

The right-hand side of Eq. (A.7) leads to a surface contribution at r = a 
that is evaluated using boundary conditions (A.3) and (A.5), while the 
contribution at infinity vanishes. Equation (A.8) is identical to Eq. (2.4) 
when k(r) = x6(r - a). 
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